Skip to main content
\(\def\Z{\mathbb{Z}} \def\zn{\mathbb{Z}_n} \def\znc{\mathbb{Z}_n^\times} \def\R{\mathbb{R}} \def\Q{\mathbb{Q}} \def\C{\mathbb{C}} \def\N{\mathbb{N}} \def\M{\mathbb{M}} \def\G{\mathcal{G}} \def\0{\mathbf 0} \def\Gdot{\langle G, \cdot\,\rangle} \def\phibar{\overline{\phi}} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\Ker}{Ker} \def\siml{\sim_L} \def\simr{\sim_R} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section9.2The Second and Third Isomorphism Theorems

The following theorems can be proven using the First Isomorphism Theorem. They are very useful in special cases.

Proof
Proof
Example9.2.3

Using the Third Isomorphism Theorem, we see that the group

\begin{equation*} (\Z/12\Z)/(6\Z/12\Z) \end{equation*}

is isomorphic to the group \(\Z/6\Z\text{,}\) or \(\Z_6\text{.}\)