Skip to main content
\(\def\Z{\mathbb{Z}} \def\zn{\mathbb{Z}_n} \def\znc{\mathbb{Z}_n^\times} \def\R{\mathbb{R}} \def\Q{\mathbb{Q}} \def\C{\mathbb{C}} \def\N{\mathbb{N}} \def\M{\mathbb{M}} \def\G{\mathcal{G}} \def\0{\mathbf 0} \def\Gdot{\langle G, \cdot\,\rangle} \def\phibar{\overline{\phi}} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\Ker}{Ker} \def\siml{\sim_L} \def\simr{\sim_R} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

AppendixANotation

The following table defines the notation used in this book. Page numbers or references refer to the first appearance of each symbol.

Symbol Description Location
\(x \in S\) \(x\) is an element of \(S\) Definition 1.1.3
\(x \not\in S\) \(x\) is not an element of \(S\) Definition 1.1.3
\(\emptyset\) the empty set, \(\{\}\) Definition 1.1.3
\(\Z\) the set of all integers Example 1.1.4
\(\Q\) the set of all rational numbers Example 1.1.4
\(\R\) the set of all real numbers Example 1.1.4
\(\C\) the set of all complex numbers Example 1.1.4
\(\N\) the set of all natural numbers, \(\{0,1,2,\ldots\}\) Example 1.1.4
\(\Z^+,\Q^+,\R^+\) the set of all positive elements of \(\Z,\Q,\R\) Example 1.1.4
\(\Z^-,\Q^-,\R^-\) the set of all negative elements of \(\Z,\Q,\R\) Example 1.1.4
\(\Z^*,\Q^*,\R^*,\C^*\) the set of all nonzero elements of \(\Z,\Q,\R,\C\) Example 1.1.4
\(\M_{m\times n}(S)\) the set of all \(m \times n\) matrices over \(S\) Definition 1.1.5
\(\M_n(S)\) the set of all \(n \times n\) matrices over \(S\) Definition 1.1.5
\(A\subseteq B\) \(A\) is a subset of the \(B\) Definition 1.1.8
\(A\subsetneq B\) \(A\) is a proper subset of \(B\) Definition 1.1.8
\(P(A)\) the power set of \(A\) Definition 1.1.12
\(A\cap B\) the intersection of \(A\) and \(B\) Definition 1.1.15
\(A\cup B\) the union of \(A\) and \(B\) Definition 1.1.15
\(A - B\) the difference of \(A\) and \(B\) Definition 1.1.15
\(\bigcup_{i\in I}A_i\) \(\{x: x\in A_i \text{ for some } i\in I\}\) Definition 1.1.15
\(\bigcap_{i\in I}A_i\) \(\{x: x\in A_i \text{ for every } i\in I\}\) Definition 1.1.15
\(A\times B\) the direct product of \(A\) and \(B\) Definition 1.1.16
\(f:S\to T\) function \(f\) from \(S\) to \(T\) Definition 1.2.1
\(f(U)\) the image of a set \(U\) under \(f\) Definition 1.2.1
\(f^{\leftarrow}(V)\) the preimage of a set \(V\) under \(f\) Definition 1.2.1
\(f\circ g\) the composition of \(f\) with \(g\) Definition 1.2.7
\(1_S\) the identity function on \(S\) Definition 1.2.7
\(f^{-1}\) the inverse of \(f\) Theorem 1.2.10
\(|S|\) the cardinality of \(S\) Definition 1.3.1
\(\langle S, *\rangle \) binary structure Definition 2.1.1
\(e\) the identity element in a binary structure/group Definition 2.1.6
\(\det A\) the determinant of \(A\) Definition 2.4.3
\(GL(n,\R)\) the general linear group of degree \(n\) over \(\R\) Definition 2.4.3
\(I_n\) the \(n\times n\) identity matrix Theorem 2.4.4
\(e_G\) the identity element in a group \(G\) Convention 2.5.2
\(a^{-1}\) the inverse of \(a\) in a group Convention 2.5.2
\(-a\) the inverse of \(a\) in an abelian group Item
\(n\Z\) \(\{nm\,:\,m\in \Z\}\) Example 2.6.1
\(a\equiv_n b\) \(a\) is congruent to \(b\) mod \(n\) Definition 2.6.4
\(R_n(a)\) the remainder when \(a\) is divided by \(n\) Definition 2.6.7
\(+_n\) addition modulo \(n\) Definition 2.6.8
\(\Z_n\) the cyclic group of order \(n\) Example 2.6.12
\(\Z_n^{\times}\) \(\{a\in \Z_n\,:\,\gcd(a,n)=1\}\) Definition 2.6.18
\(F\) the set of all functions from \(\R\) to \(\R\) Example 2.6.20
\(B\) the set of all bijections from \(\R\) to \(\R\) Example 2.6.21
\(Z(G)\) the center of a group \(G\) Exercise 2.8.9
\(C^1\) the set of all differentiable functions from \(\R\) to \(\R\) whose derivatives are continuous Item 6
\(C^0\) the set of all continuous functions from \(\R\) to \(\R\) Item 7
\(c_a\) conjugation by \(a\) Example 3.2.5
\(G\simeq G'\) \(G\) is isomorphic to \(G'\) Definition 3.3.1
\(G\not \simeq G'\) \(G\) is not isomorphic to \(G'\) Definition 3.3.1
\(H\leq G\) \(H\) is a subgroup of \(G\) Definition 4.1.1
\(H\not \leq G\) \(H\) is not a subgroup of \(G\) Definition 4.1.1
\(\langle a \rangle \) the (cyclic) subgroup generated by \(a\) Definition 5.1.5
\(o(a)\) the order of element \(a\) Definition 5.1.10
\(S_A\) the set of all permutations on \(A\) Definition 6.1.6
\(S_n\) the symmetric group on \(n\) letters Definition 6.2.1
\(A_n\) the alternating group on \(n\) letters Definition 6.3.8
\(\lambda_a\) left multiplication by \(a\) Definition 6.4.2
\(\rho_a\) right multiplication by \(a\) Definition 6.4.2
\(\mapsto\) maps to Paragraph
\(D_n\) the dihedral group of order \(2n\) Definition 6.5.4
\(xRy\) \(x\) is related to \(y\) Definition 7.1.3
\(x\not R y\) \(x\) is not related to \(y\) Definition 7.1.3
\([x]\) the equivalence class of \(x\) Definition 7.1.9
\(a\siml b \) \(a^{-1}b\in H\text{,}\) where \(H\leq G\) is specified Definition 7.2.1
\(a\simr b\) \(ab^{-1}\in H\text{,}\) where \(H\leq G\) is specified Definition 7.2.1
\(aH, a+H\) the left coset of \(H\) containing \(a\) Definition 7.2.4
\(Ha, H+a\) the right coset of \(H\) containing \(a\) Definition 7.2.4
\(\Leftrightarrow\) if and only if Note 7.2.5
\(H\unlhd G\) \(H\) is a normal subgorup of \(G\) Definition 7.2.13
\(G/H\) the set of all left cosets of \(H\) in \(G\) Definition 7.2.18
\((G:H)\) \(|G/H|\) Definition 7.3.1
\(aHb\) \(\{ahb\,:h\in H\}\) Definition 8.2.1
\(\Ker \phi\) the kernel of \(\phi\) Definition 8.2.7
\(G/N\) the factor group \(G/N\text{,}\) when \(N\unlhd G\) Definition 8.3.2
\(\Psi\) the canonical epimorphism from \(G\) to \(G/N\) Definition 8.3.14
\(S^1\) the unit circle \(\{e^{i\theta} \,:\, \theta\in \R\}\) in the complex plane Paragraph